Reaction Stereochemistry

A regioselective reaction: preferential formation of one constitutional isomer

 $A \longrightarrow B + C$

more B is formed than C where B and C are constitutional isomers

A stereoselective reaction: preferential formation of a stereoisomer

 $A \longrightarrow B + C$

more B is formed than C where B and C are stereoisomers

Stereoselectivity vs.
Sterospecificity

Chiral Acids-Bases
Diastereomers

http://ep.llnl.gov/msds/orgchem/Chem226/stereo1.html

A stereospecific reaction: each stereoisomeric reactant produces a different stereoisomeric product or a different set of products

 $A \ \longrightarrow \ B$

 $C \longrightarrow D$

A and C are stereoisomers B and D are stereoisomers

All stereospecific reactions are stereoselective Not all stereoselective reactions are stereospecific

Many reactions convert achiral reactants to chiral products.

If all of the components of the starting state (reactants, catalysts, solvents, etc.) are achiral, any chiral products that will be formed are racemic mixtures.

"Optically inactive starting materials can't give optically active oroducts."

In order for a substance to be optically active, it must be chiral and one enantiomer must be present in greater amounts than the other.

Table 5.2 Stereochemistry of Alkene Addition Reactions

Reaction

Type of addition

Addition reactions that create one asymmetric carbon in the product

asymmetric carbon in the product

Addition reactions that create two asymmetric carbons that create two asymmetric carbons in the product

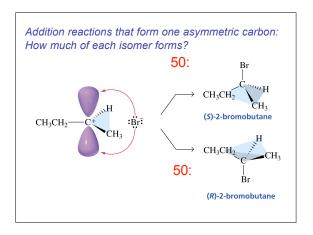
Addition reactions that create two asymmetric carbons in the product

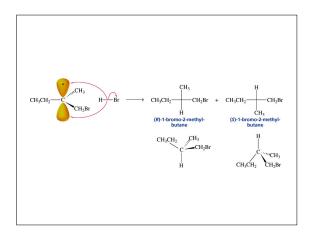
Addition or reagents that form a carbocation or radical intermediate

Addition of H₂

Syn cis → crythne enantioners the same products)

Addition of B₂


anti cis → three canniformers


trans → three canniformers

trans → three canniformers

trans → crythe connitioners

Stereochemistry of Electrophilic Addition Reactions of Alkenes CH3CH2CH=CH2 Hr CH3CH2CHCH3 Br 2-bromobutane Can you determine the absolute configuration of the product?

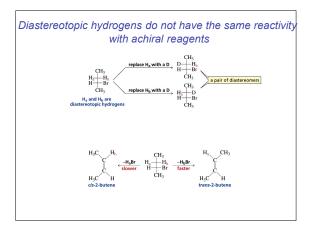
Many biochemical reactions convert
an achiral reactant to a single
enantiomer of a chiral product

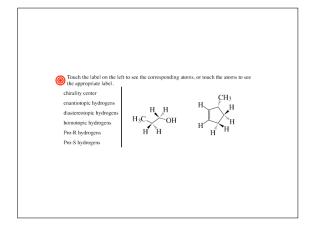
Reactions in living systems are catalyzed by
enzymes, which are enantiomerically homogeneous.

The enzyme (catalyst), which is chiral and optically
active, is part of the reacting system, so such
reactions don't violate the generalization that
"Optically inactive starting materials can't give
optically active products."

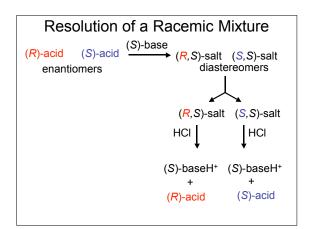
Addition reactions that form an additional asymmetric carbon
$$\begin{array}{c} \text{CH}_3 \\ \text{Cl} \stackrel{}{\leftarrow} \text{H} \\ \text{CH} = \text{CH}_2 \\ \text{(R)-3-chloro-1-butene} \\ \end{array} \begin{array}{c} \text{CH}_3 \\ \text{CHCH}_3 \\ \text{Br} \\ \end{array}$$

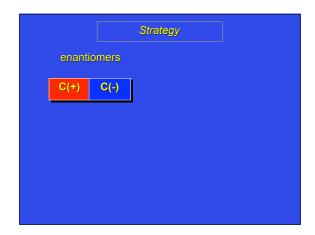
Addition reactions that form two asymmetric carbons A radical reaction intermediate
$$\begin{array}{c} \text{Aradical reaction intermediate} \\ \\ \text{CH}_3\text{CH}_2 & \text{CH}_2\text{CH}_3 \\ \text{H}_3\text{C} & \text{CH}_3 & \text{H}_3\text{C} \\ \text{CH}_3 & \text{H}_3\text{C} & \text{CH}_3\text{CH}_3 \\ \text{CH}_3 & \text{H}_3\text{C} & \text{CH}_3\text{CH}_3 \\ \text{CH}_3 & \text{H}_3\text{C} & \text{CH}_3\text{CH}_3 \\ \text{CH}_3\text{CH}_3 \\ \text{CH}_3\text{CH}_3 & \text{CH}_3\text{CH}_3 \\ \text{CH}_3\text{C$$


$$C = C \xrightarrow{Br - Br} Br$$


$$: \vec{\beta}_r : Br$$


$$addition of Br_2 is an anti addition$$


Stereochemistry Vocabulary


Enantiotopic hydrogens have the same chemical reactivity and cannot be distinguished by achiral agents, but they are NOT chemically equivalent toward chiral reagents (Most relevant in biochemistry/physiology.)

